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Project Overview 

• Purchased CO2 for pH control and added inorganic carbon (iC) is 
one of the major costs of industrial algal cultivation. 
• CO2 costs are high because traditional sparging leads to CO2 

utilization efficiencies (CUE) of only 10-15%. 
• The objectives of this project are to increase CUE with a novel 

enzymatic membrane transfer system and to develop a faster-
growing variant of Nannochloropsis oceanica. 
o 25% increase in CUE 
o 20% productivity increase 

• Significance: Lower algal biofuel cost 
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1 – Management 

• Project structure 
o Task 1 (enzymatic membrane) 

• Enzyme improvement (NREL) 
• Membrane and module development (CSU) 

Collaboration within task: 
• Desired enzyme properties 
• Methods for rate measurement 
• Production of improved variants 

for testing 
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1 – Management 

• Project structure 
o Task 1 (enzymatic membrane) 
o Task 2 (improved strains) 

• Engineered carbon concentrating 
mechanism (CSU) 

• Strain adaptation (NREL) 
• Strain characterization (CSU) 

Collaboration within task: 
• Discussion of test conditions 
• Shared genome sequence and 

annotation 
• Proteomics analysis of variants 
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1 – Management 

• Project structure 
o Task 1 (enzymatic membrane) 
o Task 2 (improved strains) 
o Task 3 (integration) 

• Pond modeling (CSU) 
• iC measurement system (NREL) 
• System performance evaluation 

(CSU, QH, NBB, NREL) 
• Process modeling (CSU) 
• TEA and LCA (CSU, NREL) 

Collaboration within task: 
• Data for modeling 
• Testing of iC injection points 

from model 
• TEA guidance for experiments 
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1 – Management 

• Project structure 
Collaboration across tasks: 

o Task 1 (enzymatic membrane) • Data for all modeling 
o Task 2 (improved strains) • Membrane modules in 

cultivation trials o Task 3 (integration) • Strains for cultivation trials 
• TEA guidance for experiments 
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1 – Management

• Project structure
• Communication

o Biweekly project team meetings
o Exchange of materials
o Collaboration on experiments and modeling
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1 – Management

• Project structure
• Communication

o Biweekly project team meetings
o Exchange of materials
o Collaboration on experiments and modeling

• Decision-making
o PI in consultation with task leads
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1 – Management

• Project structure
• Communication
• Decision-making
• Project risks

o Monitoring:
• Project update meetings with follow-up
• Review of quarterly progress reports

o Mitigation:
• Discussion and input
• Evaluation of alternatives
• Parallel efforts
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Examples:
• Development of improved

strain: planned parallel efforts
• Development of improved 

enzyme: added effort to 
broaden options



2 – Approach
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2 – Approach
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Integrating an Industrial Source and Commercial Algae
Farm with Innovative CO2 Transfer Membrane and
Improved Strain Technologies

V Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
start of quarter 10/1/18 1/1/19 4/1/19 7/1/19 10/1/19 1/1/20 4/1/20 7/1/20 10/1/20 1/1/21 4/1/21 7/1/21 10/1/21

months in quarter 1–3 4–6 7–9 10–12 13–15 16–18 19–21 22–24 25–27 28–30 31–33 34–36
Validation Phase G/NG G/NG
Obj 1: Develop membrane system for transfer of CO2  to 
water as bicarbonate
Task 1.1: Protein engineering of carbonic anhydrase to 
improve pH tolerance (NREL)

M1.1.1 M1.1.2 M1.1.3 M1.1.4

Task 1.2: Preparation and characterization of carbonic 
anhydrase membranes (CSU)

M1.2.1 M1.2.2

Task 1.3: Modeling, construction, and demonstration of CO2

transfer module (CSU)
M1.3.1 M1.3.2 M1.3.3

Obj 2:  Engineering of Nannochloropsis oceanica for 
enhanced carbon uptake
Task 2.1: CCM engineering in N. oceanica  (CSU) M2.1.1 M2.1.2
Task 2.2: Strain adaptation to high bicarbonate  levels 
(NREL)

M2.2.1 M2.2.2

Task 2.3: Characterize combined strain (photophysiology, -
omics) CSU)

M2.3.1 M2.3.2

Obj 3:  System integration, deployment, and validation 
Task 3.1: Determine optimal carbon introduction location to 
raceway pond (CSU)

M3.1.1 M3.1.2 M3.1.3 M3.1.4 M3.1.5

Task 3.2: Develop and test system for gas-phase CO2

monitoring and control (NREL)
M3.2.1

Task 3.3:  Evaluate performance of C delivery and strain 
uptake (CSU, NREL, QH)

M3.3.1 M3.3.2
M3.3.3
M3.3.4

Task 3.4: Engineering Process Modeling (CSU, NREL) M3.4.1 M3.4.2
Task 3.5: Concurrent TEA and LCA (CSU, NREL) M3.5.1 M3.5.2

Y1 Y2 Y3



2 – Approach

Task 1: Membrane system for efficient transfer of CO2 to water
• Protein engineering of carbonic anhydrase (CA) to improve pH tolerance

o Challenge: Find/create variant with durable activity at pH < 7
• Preparation of CA-containing membranes
• Construction, modeling, and testing of iC transfer module

o Challenge: Developing test system
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Milestone 1.1.2: Demonstrate a carbonic anhydrase variant with an 
active half-life of 10 hours at pH 6.

Go/No-Go: Demonstration of enzymatic membrane module for 
inorganic carbon delivery into an aqueous phase at a minimum flux 
of 2 x 10-4 mol/s·m2 at pH 7 and 30 °C. 

✓

✓



2 – Approach

Task 2: Engineering of N. oceanica for enhanced carbon uptake
• CCM Engineering in N. oceanica

o Challenge: Unstable transformants
• Strain adaptation to high bicarbonate levels

o Challenge: Random nature of mutagenesis
• Characterize novel strains
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2 – Approach

Task 2: Engineering of N. oceanica for enhanced carbon uptake
• CCM Engineering in N. oceanica

o Challenge: Unstable transformants
• Strain adaptation to high bicarbonate levels

o Challenge: Random nature of mutagenesis
• Characterize novel strains
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Milestone 2.1.1: Show expression of a reporter protein such as YFP 
in at least two separate transformation events.

Go/No-Go: At least one developed variant of N. oceanica
demonstrates at least 20% higher growth in laboratory-based high 
bicarbonate environments relative to parent strain. 

✓

✓



2 – Approach

Task 3: System integration, deployment, and validation
• Determine optimal carbon introduction location to raceway pond
• Develop and test system for gas-phase CO2 monitoring and control
• Evaluate performance of C delivery and strain uptake
• Engineering process modeling
• Concurrent TEA and LCA
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2 – Approach

Task 3: System integration, deployment, and validation
• Determine optimal carbon introduction location to raceway pond
• Develop and test system for gas-phase CO2 monitoring and control
• Evaluate performance of C delivery and strain uptake
• Engineering process modeling
• Concurrent TEA and LCA
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Go/No-Go: Demonstration of 25% increase in baseline inorganic 
carbon utilization efficiency over a 6-week continuous cultivation 
demonstration run at QH test site and 20% growth rate increase in 
the integrated systems at CSU and NREL. 



3 – Impact
• Increased CUE

o Purchased CO2 is major expense, yet nearly >85% is wasted
o Project goal is >60% CUE

• Increased productivity
o Major BETO strategy to achieve $2.50/GGE
o Project goal is 20% baseline
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3 – Impact
• Increased CUE
• Increased productivity
• Engagement with QH is extremely valuable

o Realistic baseline and conditions
o Feedback on approach

• Project provides value to QH
o Technology for iC delivery
o Flow modeling

• Dissemination
o Planned publications and patents
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4 – Progress and Outcomes

• Task 1: Membrane system for efficient transfer of CO2 to water
o Highly active CA variants identified
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Foteini Davrazou, Deanne 
Sammond, Lieve Laurens (NREL)



4 – Progress and Outcomes

• Task 1: Membrane system for efficient transfer of CO2 to water
o Highly active CA variants identified
o Lab-scale membrane modules developed with milestone flux
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Jaclyn Adkins, Boston Morris, 
Travis Bailey, Ken Reardon (CSU)



4 – Progress and Outcomes

• Task 1: Membrane system for efficient transfer of CO2 to water
o Highly active CA variants identified
o Lab-scale membrane modules developed with milestone flux
o All milestones achieved
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4 – Progress and Outcomes

• Task 2: Engineering of N. oceanica for enhanced carbon uptake
o Engineered carbon concentrating mechanism mutant

• Stable
• Demonstrated 29% average increase in specific growth rate over WT in

elevated CO2 conditions

25

Tessema Kassaw, Graham Peers (CSU)



4 – Progress and Outcomes

• Task 2: Engineering of N. oceanica for enhanced carbon uptake
o Engineered carbon concentrating mechanism mutant

• Stable
• Demonstrated 29% average increase in specific growth rate over WT in

elevated CO2 conditions
o Genome sequenced and annotated
o Go/No-Go milestone achieved
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4 – Progress and Outcomes

• Task 3: System integration, deployment, and validation
o Computational fluid dynamics model matches mixing and growth;

predicts best locations for iC stream injection

27

Chen Shen, David Dandy (CSU)



4 – Progress and Outcomes

• Task 3: System integration, deployment, and validation
o Computational fluid dynamics model matches mixing and growth; 

predicts best locations for iC stream injection
o C tracking system for ponds developed and applied
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Panczak, Alicia Sowell, Mauro Lua, Nick 
Sweeney, Kaitlin Lesco, Lieve Laurens (NREL)



4 – Progress and Outcomes

• Task 3: System integration, deployment, and validation
o Computational fluid dynamics model matches mixing and growth;

predicts best locations for iC stream injection
o C tracking system for ponds developed and applied
o Process model developed to integrate system components
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Jonah Greene, Jason Quinn (CSU)
Bruno Klein (NREL)



Summary

• Important technical goals achieved
o Improved enzyme variants
o Improved N. oceanica strain
o CFD and process models developed

• Moving to system integration and evaluation
• Schedule delays owing to COVID-19 shutdowns/restrictions;

otherwise on track
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Quad Chart Overview
Timeline
• 10/01/2019
• 3/31/2022 (NCE)
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FY20
Costed Total Award

DOE 
Funding

(10/01/2019 –
9/30/2020)
$799,490

(negotiated total 
federal share)
$2,145,600

Project 
Cost 
Share

$267,940 $752,018

Project Goal
The goal of this project is to increase CUE and 
productivity through development and application of 
a novel enzymatic membrane transfer system and 
a faster-growing variant of Nannochloropsis 
oceanica.

End of Project Milestone
Demonstration of 25% increase in baseline 
inorganic carbon utilization efficiency over a 6-
week continuous cultivation demonstration run at 
QH test site (mini-ponds plus membrane module 
plus CO2 monitoring) and 20% growth rate increase 
in integrated systems at CSU and NREL. 

Project Partners
• NREL
• Qualitas Health

Funding Mechanism
DE-FOA-0001908, Efficient Carbon Utilization in Algal 
Systems
Topic Area 1 – CO2 Utilization within Algae Cultivation 
Systems

• New Belgium Brewing



Project Team
Colorado State University
Jaclyn Adkins, Travis Bailey, Jonah Greene, Tessema Kassaw, Boston Morris, Seijin
Park, Graham Peers, Kennalyn Peterson, Jason Quinn, Ken Reardon, Chen Shen, 
Maxwell Ware
National Renewable Energy Laboratory
Ryan Davis, Foteini Davrazou, Damien Douchi, Bruno Klein, Lieve Laurens, Kaitlin 
Lesco, Mauro Lua, Bonnie Panczak, Deanne Sammond, Alicia Sowell, Nick Sweeney
Los Alamos National Laboratory
Blake Hovde, Shawn Starkenburg
Qualitas Health
Jake Nalley, Eneko Ganuza
New Belgium Brewing
Chris Keogan, Shane Roberts
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Additional Slides



Responses to Previous Reviewers’ Comments
• Go/No-Go (Interim Verification) Review

o Delayed 4 months by COVID-19 pandemic
o Held on January 15, 2021
o All milestones accomplished
o Approved for BP3
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Publications, Patents, Presentations, Awards, and 
Commercialization

• NREL Laboratory Analytical Procedure:  “Determination of Total,
Organic, and Inorganic Carbon in Biological Cultures in Liquid Fraction
Process Samples” (https://www.nrel.gov/docs/fy21osti/78622.pdf)
• Publications in preparation include:

o Carbonic anhydrase engineering
o CCM engineering
o N. oceanica genome sequencing and annotation
o Algae cultivation computational fluid dynamics modeling
o iC measurement system design and application
o Engineering process modeling
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https://www.nrel.gov/docs/fy21osti/78622.pdf


4 – Progress and Outcomes (Task 1.1)
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Activity Retention of Carbonic Anhydrase Variant at pH 6
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4 – Progress and Outcomes (Task 2.3)

• Sequencing and annotation
oGenome is 30.96 Mbp

• 3144 scaffolds
• 1546 scaffolds >1000 bp

oPaired end-read Illumina sequencing
• 3.94M reads; 118kM bases
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Seijin Park, Ken Reardon, 
Graham Peers (CSU)
Shawn Starkenburg, Blake 
Hovde, (LANL)



4 – Progress and Outcomes (Task 2.3)

• Sequencing and annotation

38

IMET1 (2014) LANL-CSU (2020)

entries 9915 11131 

unknown function 9915 4958 

Seijin Park, Ken Reardon, 
Graham Peers (CSU)
Shawn Starkenburg, Blake 
Hovde, (LANL)



4 – Progress and Outcomes (Task 3.1)
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Chen Shen, David Dandy (CSU)



4 – Progress and Outcomes (Task 3.1)
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Chen Shen, David Dandy (CSU)



4 – Progress and Outcomes (Task 3.1)
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Chen Shen, David Dandy (CSU)



4 – Progress and Outcomes (Task 3.1)
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Chen Shen, David Dandy (CSU)
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4 – Progress and Outcomes 
(Task 3.2)
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Medium composition and pH affect 
efficiency of CUE

Damien Douchi, Foteini Davrazou, Bonnie 
Panczak, Alicia Sowell, Mauro Lua, Nick 
Sweeney, Kaitlin Lesco, Lieve Laurens (NREL)


